Estrogens in Wastewater

LeeAnn Racz, PE Dr. Ramesh Goel University of Utah November 2008

Overview

- What are estrogens?
- Why do we care about estrogens in wastewater?
- Analytical methods
- Ongoing research
- How do we reduce the amount released to the environment?

What are estrogens?

- Natural hormones
 - 17β-Estradiol (E₂)
 - Estrone (E1)
 - Estriol (E₃)

- Synthetic hormones
 - -17α -Ethinyl estradiol (EE₂)

What are estrogens?

- Class of endocrine disrupting compounds (EDC)
 - Mimic or block natural estrogen
 - Estrogens have three orders of magnitude greater estrogenic potencies than other EDCs identified in wastewater
 - E2 and EE2 most potent
- Humans excrete in urine and feces as inactive polar conjugates
 - Women typically excrete 0.5 to 5 μg/day of E2 (up to approximately 400 μg/day for pregnant women)
 - Excretion rates for the other estrogens are 3 to 20 μ g/day of E1 and up to about 64 μ g/day of E3

- Bacterial enzymes in raw wastewater and in activated sludge convert the excreted conjugates back to the active unconjugated forms
 - Possible to have effluent concentrations exceed influent concentrations
 - Estrogens that are not degraded during the wastewater treatment process are released to the environment with the effluent
 - Treated municipal wastewater is one of the most likely sources of estrogenic compounds in the environment

- Estrogen concentrations in municipal wastewater and surface water receiving effluent in ng/L liter level
 - Concentrations of 40-100 ng/L found in municipal wastewater
 - Concentrations of 10-100 ng/L commonly found in wastewater effluents

- Predicted-no-effect-concentration (PNEC) of 1 ng/L for E2 and 3-5 ng/L for E1,
- Lowest-observable-effect-level (LOEL) affecting production of vitellogenin (egg yolk protein normally associated with sexually mature females) in juvenile female rainbow trout is 3.3 ng/L for E1 and 14 ng/L for E2
- Less than 1 ng/L of EE2 can stimulate male rainbow trout to produce vitellogenin
- Concentration of 4 ng/L EE2 can cause failure in the male

fathead minnow to develop normal secondary sexual characteristics

- Exposure to estrogen levels as low as 1 ng/L can cause the development of intersex roaches in rivers
- Measurable changes in fish reproduction can result at E2 and EE2 concentrations as low as 2 ng/L
- Although controversial, suggested associations between EDCs in the environment and human sperm quality as well as breast, testicular and prostrate cancers

Analytical Methods

- Current EDC laws regulate only industries producing or using raw chemicals
- No federal regulations for estrogens in drinking or natural waters
- State of CA monitoring EDCs and PPCPs, especially when municipal wastewater effluent used for indirect potable reuse

Analytical Methods

No standard methods for estrogens

• Desire to quantitate at ultratrace concentrations (sub-

ng/L)

 Most methods involve an extraction procedure followed by instrumental and/or immunoassay analysis

Solid phase extraction (to extract and concentrate)

- GC/MS or LC/MS

Estrogen Degradation in Activated Sludge

Estrogen Sorption Isotherms for Activated Sludge

Full-scale Plant Study

Sample Location	Estrone (E1)	Estradiol (E2)	Estriol (E3)	17α-Ethyinyl- estradiol (EE2)
Plant A Influent	N/D	N/D	N/D	N/D
Plant A Effluent	0.0417*	0.0934*	N/D	N/D
Plant BInfluent	N/D	N/D	N/D	N/D
Plant B Effluent	N/D	N/D	N/D	0.0781*
Plant C Influent	N/D	N/D	N/D	N/D
Plant C Influent (Duplicate)	N/D	N/D	N/D	N/D
Plant C Effluent	N/D	N/D	N/D	N/D
Plant C Effluent (Duplicate)	N/D	0.368	0.410	0.248
Plant D Influent	N/D	N/D	0.021*	N/D
Plant D Effluent	N/D	0.153	N/D	0.051*
Plant E Influent	N/D	N/D	0.214	N/D
Plant E Influent (Duplicate)	N/D	N/D	0.005*	N/D
Plant E Effluent	0.024*	N/D	0.141	N/D
Plant E Effluent (Duplicate)	0.053*	0.102*	N/D	0.039*

^{*} Below the limit of quantitation

Ongoing Research

- Full-scale studies
 - ND to 0.410 μg/L in effluent
 - ND to 0.214 μg/L in influent
- Nitrifying activated sludge
 - Solvent application
 - Nitrifying community changes with non-nitrifying community changes

How do we reduce the amount released to the environment?

- Primary settling Poor
- Trickling filters Less effective than activated sludge
- Nitrifying activated sludge Good
 - Synthetic EE2 removed more effectively than in nonnitrifying activated sludge
- Denitrification process Good
- Sludge retention time is likely an important factor

How do we reduce the amount released to the environment?

- Chemical precipitation Maybe OK
 - Could be associated with organic phases of particulates
- Activated carbon Good
 - PAC can remove 60-80% of E2 and EE2
- Chlorination Conflicting results
 - Free Cl reacts with phenolic compounds
 - Other studies found Cl ineffective in degrading estrogens

How do we reduce the amount released to the environment?

- Ozonation Some removal
- Ultraviolet Irradiation Not effective
 - Typical UV doses for disinfection several orders of magnitude less than those needed to treat estrogens
- Reverse Osmosis Good
 - >90% removal of steroid hormones
 - Microfiltration (0.1 0.4 μm) do not remove

compounds

Summary

- Estrogens are powerful EDCs
- No current legislation
- Problematic to measure
- Can be removed by
 - Biotransformation, especially nitrifying activated sludge
 - Denitrification
 - Activated carbon
 - Reverse osmosis

Questions?

Conjugated vs. Unconjugated

17β-estradiol-3-glucuronide

17β-estradiol-3-sulphate

estrone

estrone-3-glucuronide

estrone-3-sulphate